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Abstract 

In this note we present and exemplify a new protocol for envelope computation, specifically conceived 

for its implementation in programs, such as GeoGebra, that combine Computer Algebra and Dynamic 

Geometry features. It extends, in different ways, the usual envelope concept, allowing, in particular, 

the computation of several kind of envelopes in 3D. The motivation, antecedents and advantages of this 

approach in an educational context are highlighted.   

 

1. Introduction   
Envelope computation is a traditional topic, present in the curriculum of different scientific careers 

for its ubiquitous emergence as a tool to model many situations (eg. robot motion planning, 

geometric optics, Computer Aided Design, Economics, etc.), and, of course, as a basic concept in 

Differential Geometry with connections to other mathematics fields, such as singularity theory, 

algebraic geometry, matrix theory, hyperbolic geometry, etc. We remit, for example, to the classical 

survey by Pottmann-Peternell [18] or to the quite recent one, on applications, by Bicker-Gorkin-

Tran [2], and to the references therein. As a consequence, envelopes are particularly well suited for 

a STEAM (Science, Technology, Engineering, Art, Mathematics)-focused education. 

The concept of envelope merges several characteristics that make it especially attractive for 

an ample spectrum of researchers in mathematics education, in computational mathematics, etc. For 

example, envelope’s definition involves just elementary notions, yet it is a manifold concept, and it 

is still an open task to establish precise relations among them. Thus [7]  –probably, see [8]—the 

most reputed  authority on the subject, describes in detail the four classical definitions: the 

geometric envelope, as tangent to every curve of the given family F(t, x, y)=0; the limiting-position 

envelope, determined by the intersection of close curves in the family; the discriminant envelope, 

obtained by eliminating the parameter t in the system {F(t, x, y)=0,  Ft(t, x, y)=0});  and the 

boundary envelope (the boundary of the two-dimensional set of the plane described by all the 

curves in the family). But, while different works (eg. [8], [4], [2]) mention several results describing 

relations among these definitions and stating conditions for their coincidence, they also refer to the 

still unsolved difficulties for establishing a general theorem.  

Thus, we should remark that, in what follows, we will focus, as in [7]1, in the definition of 

envelope as a discriminant. 

 
1 That seems to be mostly the inspiration for https://en.wikipedia.org/wiki/Envelope_(mathematics) and other popular 

references for this subject. 

https://en.wikipedia.org/wiki/Envelope_(mathematics)
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A second reason supporting the presence of envelopes in the current scientific literature is 

the opportunity their study brings to foster the cooperation of algebra, geometry and technological 

tools in the classroom, via CAS (computer algebra systems) and DGS (dynamic geometry systems) 

programs, now quite widely and freely available, for example, through the dynamic mathematics 

program GeoGebra (www.geogebra.org), [10]. Certainly, DGS provide a relevant opportunity to 

visualize envelopes, while CAS make possible to consider a rigorous approach for computing them.  

Let us recall that envelopes are a particular case of locus computation; and locus 

computation is recognized [1] as one of the five basic characteristics in the DGS paradigm, see also 

[3]. Yet, in [4], [5] a survey was detailed on the performance of different DGS (Cabri, Cinderella, 

The Geometer’s Sketchpad, GeoGebra) for envelope computation, showing that all these programs 

presented notable limitations, in a double sense. One, regarding the kind of curves (mostly lines, 

circles, ...) that could be involved, for each value of t, in the input family F(t, x, y)=0,  or that could 

be analytically recognized as the computed envelope.  Two –and more relevant from a 

mathematical perspective—concerning the implemented methods, as they are mainly graphic. For 

example, computing envelopes by merely tracing a large sequence of curves of the given family, 

and visually displaying the intersection of nearby curves, etc. Obviously, this graphic approach is 

not well suited to deal with the most relevant concept of envelope as a discriminant, as it requires 

algebraic computations. 

Thus, improving computation of envelopes in DGS contexts is a quite nuclear issue, that is 

currently attracting the attention of many researchers. See, for example, some previous work by one 

of the authors [4], [5], [6] or the large collection of contributions by prof. Dana-Picard and 

colleagues, both concerning the theoretical framework, as in [13], [14], [15], or, developing some 

concrete computations in particular instances [9], [11], [12].  
Our approach collects some of our previous, disperse, work; focuses on the case of 

algebraic, implicit families in 2D and 3D, described with several parameters, both when they are 

given independently or constrained by some equations.  The merging of all these characteristics in a 

single paper, plus the exemplification and analysis through GeoGebra of the different proposals, 

profiting from the interaction CAS/DGS that this program allows, is, perhaps, the most valuable 

contribution of this note.   
 

2. Extending envelope computation in GeoGebra   
To start with, working with envelopes in DGS requires first, in our opinion, to reconsider the 

classical approach and to extend the concept of envelope so that it includes some cases that arise 

very naturally in the DGS constructions. For example, the admissible input for envelope 

computations should go beyond the traditional restriction to uni-parametric families F(t, x, y)=0  

and accept families of curves F(a, b, x, y)=0, depending on (a, b),  the coordinates of a mover point, 

ie. a point moving on another curve G(a, b)=0.  

This is already possible with GeoGebra, after version 5, via the Envelope( <Path>, 

<Point>) command, where <Point> refers to the mover point,  and <Path> points out to the curve 

built after performing different steps involving the mover. See Figure 1, adapted from the tutorial 

[16], displaying the envelope eq2:Envelope(f, C), an ellipse, of the family of lines f (the output 

Path) perpendicular to g=segment(CD), for a fixed point D and a point C moving on the circle c 

centered at A and passing through B. 

 

http://www.geogebra.org/


The Electronic Journal of Mathematics and Technology, Volume 15, Number 3, ISSN 1933-2823 
 

 

244 

 

 
Figure 1: GeoGebra computation of the envelope of a family of lines f perpendicular to CD, 

when C moves on a circle c centered at A and going through B, and D is a fixed point. 

   

As proposed in [4], the internal algorithm that GeoGebra applies for computing such envelopes 

proceeds by eliminating the variables (a, b) in the system {F(a, b, x, y)=0,  

Jacobian(matrix({∂F/∂a, ∂F/∂b},{∂G/∂a , ∂G/∂b}})= ∂F/∂a*∂G/∂b-∂F/∂b*∂G/∂a=0}. For example, 

assume the user takes a point C(a,b) in the circle G(a,b)=a^2+b^2-4=0, a fixed point D(3/2, 0), and 

finally, considers the family of perpendicular lines to the segment CD passing through point C,   

F:=(3/2-a)(x-a)+(0-b)(y-b)=0. Then, GeoGebra computes the Jacobian of the matrix {{∂F/∂a, 

∂F/∂b}, {∂G/∂a, ∂G/∂b}}, yielding the determinant Jacobian=2 a y - 2 b x - 3 b and performs the 

elimination of all variables except {x,y} in the ideal <F,G, Jacobian>, obtaining as envelope the 

ellipse 7x^2+16y^2-28=0.  

As a second example, replicating manually these internal computations, Figure 2 shows, to 

the left, the CAS window of GeoGebra, introducing, in row 1, the equation of a circle of radius 1 

centered at a point A=(a, b) on the parabola b=a2 . Then the third row computes the Jacobian 

matrix, with determinant 4ab-4ay+2a-2x. Finally, row 5 does the elimination of the ideal of 

polynomials appearing in rows 1, 2, and 4; and row 6 shows the output, the envelope, a curve of 

degree 6 (in blue in the Figure).   

 

 
 

Figure 2: The envelope of a family of circles of radius 1 centered at a point A=(a, b) moving on a 

parabola. 
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Two remarks are needed at this point. One is to recall that the Eliminate command in GeoGebra, 

and the associated mathematical concept, deals only with polynomials. Of course it can be 

simulated by using some alternative approaches, such as solving {F=0, G=0} for a and b in terms 

of x, y and substituting the obtained solutions in the values of a and b in the Jacobian, yielding an 

equation in {x,y} only.  But, again, there is not a computational sound definition of “solving” except 

for the case of polynomial equations, and it is related to the concept of elimination!2 

The second remark we would like to point out is about this particular way of finding the 

envelope, as detailed in Figure 2, cannot be always replaced by using the standard Envelope 

command of GeoGebra. For instance, in this case this is so since the parabola f and the circle c have 

not been introduced through GeoGebra constructions, but as implicitly given curves. See Figure 3 

that shows, to the left, the envelope computed using GeoGebra’s CAS in the previous Figure 2. It 

cannot be obtained using the Envelope(c, A) command, that returns undefined. To the right, the 

same envelope but this time obtained by GeoGebra after introducing circle d and the parabola c 

through some construction commands (eg. the parabola with focus A and directrix f, and circle 

centered at D with radius g=distance(BC)). 

 

 
 

Figure 3:  To the left, the envelope Envelope(c, A) command returns undefined. To the right, the 

same envelope obtained by GeoGebra after introducing the involved elements through some 

construction commands. 

 

As initially remarked in [4], and developed in [5] and [6], the computational approach we have 

described can be easily extended to consider families of curves depending on many parameters, 

F(a1, a2, …,an, x, y)=0, as long as the parameters are constrained by n-1 independent conditions 

{G1(a1, a2, …,an)=0, …,Gn-1(a1, a2, …,an)=0},  computing the Jacobian Jacobian(matrix({∂F/∂a1, 

…, ∂F/∂an},{∂G1/∂a1, …, ∂G1/∂an},…, {∂Gn-1/∂a1, …, ∂Gn-1/∂an}}) and eliminating all variables 

except {x,y} in the ideal generated by all these polynomials F, G’s and the Jacobian, or, 

geometrically and roughly speaking, projecting the associated 1-dimensional algebraic set {F=0, G1 

=0,..,Gn-1=0, Jacobian=0}over the {x, y}  plane.  

This opens a series of delicate issues about the best algorithm to achieve more accurately 

such projection, such as using Gröbner basis, the current standard option in GeoGebra; or Gröbner 

Cover [17], also available over GeoGebra 5, but outsourcing the Gröbner Cover computation to the 

CAS program Singular (https://www.singular.uni-kl.de ). Indeed, in our opinion, at this moment the 

more general and sophisticated approach to envelope computation --that carefully analyzes and 

 
2 One of the authors of the paper did ask some responsible person of a DGS team about how rigorous could be 

considered their currently implemented Solve and Solutions commands, and the answer was that, except for the 

polynomial case, the commands were a collection of (very efficient, but) “hacks”…. 

https://www.singular.uni-kl.de/
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classifies the different kind of fibers projecting over each point in the zero set of the elimination 

ideal, as originated in [1]-- is developed in [17] with a whole chapter devoted to this issue, but 

involving some complex mathematical issues whose description is beyond the scope of our current 

note. It must be remarked that this advanced approach is a kind of prototype proposal, not yet 

implemented in any DGS. 

 

3. Envelopes 3D in GeoGebra 

As our computational approach to envelopes is quite general, the 3D case can be handled in a quite 

similar way to the one described in the previous section. Let us start with the following example. 

We consider the family F(a, b, c, x, y, z)=a(x-a)+b(y-b)+c(z-c)=0 of planes tangent to the circle 

intersection of a sphere G1=a^2+b^2+c^2-4=0  and the plane (in green in Figure 4) G2=a+b+c-

1=0. Now, computing the envelope of this family requires just the elimination of the parameters in 

the ideal generated by the equation of the family, the equations of the sphere and the plane, and the 

Jacobian -2ay+2az+2bx-2bz-2cx+2cy of the 3X3 matrix, where the rows include the partial 

derivatives of these three equations with respect to a, b, and c. The elimination yields the cone (in 

red in Figure 4) 7x^2-8xy-8xz+7y^2-8yz+7z^2+8x+8y+8z-48=0. See Figure 4, with GeoGebra 3D 

view to the right and the CAS view to the left, showing the performance of the mentioned 

computations. 

 

 
 

Figure 4: A cone as the envelope of a family of tangent planes to a circle in the unit sphere. 

  

Of course, Elimination can be quite complex as the number of variables increase and, if this is the 

case, GeoGebra is programmed to abort the computation. See Figure 5, attempting to compute the 

envelope of a family of unit spheres centered at the points in the twisted cubic (t^3, t^2, t) with (set-

theoretical) implicit equations {ac-b^2=0, a-c^3=0}. The result, computed with Maple, is the 

product of the equation of the unit sphere to the fourth power (a degenerate case), times the product 

of two similar equations, the one displayed in the Appendix to this Note and a similar one obtained 

replacing y by -y in this equation.  It is, thus, a degree 48 surface! See Figure 6, where, copying the 
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Maple output and pasting it in the Surfer3 input line, we have drawn the twisted tube surface given 

by the equation in the Appendix.  

 

 
Figure 5: failing to compute the envelope of a family of spheres centered at points in the twisted 

cubic. 

 

 

  
Figure 6: two perspectives of a twisted tube, drawn with Surfer 

 

7. Conclusions    
We have presented the advantages of a definition of envelope that allows a) its rigorous 

implementation in cooperative Dynamic Geometry/Computer Algebra programs such as GeoGebra, 

b) solving some deficiencies of these programs, when implicit objects are involved as input, instead 

of geometric constructions, c) easily extending envelope computation to the 3D case.  

These issues have been illustrated through some examples and figures, hoping that they will 

facilitate the introduction, with the help of GeoGebra, of this relevant issue at different educational 

levels. 
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3 An excellent program for drawing surfaces given by implicit equations, see  https://imaginary.org/es/program/surfer 

https://imaginary.org/es/program/surfer
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Appendix 

Equation of the twisted tube (Figure 6): 

729*x^4*y^6+2187*x^4*y^4*z^2+2187*x^4*y^2*z^4+729*x^4*z^6+1458*x^2*y^8+5832*x^2*

y^6*z^2+8748*x^2*y^4*z^4+5832*x^2*y^2*z^6+1458*x^2*z^8+729*y^10+3645*y^8*z^2+729

0*y^6*z^4+7290*y^4*z^6+3645*y^2*z^8+729*z^10+1458*x^6*y^3-

4374*x^6*y*z^2+8748*x^5*y^3*z+8748*x^5*y*z^3+2916*x^4*y^5-7776*x^4*y^3*z^2-

10692*x^4*y*z^4+18468*x^3*y^5*z+36936*x^3*y^3*z^3+18468*x^3*y*z^5+1242*x^2*y^7-

5778*x^2*y^5*z^2-15282*x^2*y^3*z^4-

8262*x^2*y*z^6+9720*x*y^7*z+29160*x*y^5*z^3+29160*x*y^3*z^5+9720*x*y*z^7-216*y^9-

2592*y^7*z^2-6480*y^5*z^4-6048*y^3*z^6-1944*y*z^8+729*x^8-

4374*x^7*z+8019*x^6*y^2+8991*x^6*z^2-9234*x^5*y^2*z-

13122*x^5*z^3+13176*x^4*y^4+28971*x^4*y^2*z^2+15039*x^4*z^4-8964*x^3*y^4*z-

15174*x^3*y^2*z^3-

13122*x^3*z^5+3877*x^2*y^6+2259*x^2*y^4*z^2+3807*x^2*y^2*z^4+4401*x^2*z^6-

4104*x*y^6*z-6102*x*y^4*z^3-6804*x*y^2*z^5-4806*x*z^7-2009*y^8-18947*y^6*z^2-

33219*y^4*z^4-18657*y^2*z^6-2376*z^8+7560*x^6*y-

9936*x^5*y*z+13478*x^4*y^3+32112*x^4*y*z^2-49116*x^3*y^3*z-

45180*x^3*y*z^3+9134*x^2*y^5+35628*x^2*y^3*z^2+31068*x^2*y*z^4-40152*x*y^5*z-

74428*x*y^3*z^3-

37476*x*y*z^5+3432*y^7+8690*y^5*z^2+16894*y^3*z^4+11124*y*z^6+151*x^6+7134*x^5*z-

13094*x^4*y^2-10107*x^4*z^2-5180*x^3*y^2*z+10160*x^3*z^3-10066*x^2*y^4-

8008*x^2*y^2*z^2-6687*x^2*z^4-8696*x*y^4*z-

8092*x*y^2*z^3+7026*x*z^5+3784*y^6+31270*y^4*z^2+33178*y^2*z^4+4439*z^6-

19808*x^4*y+15472*x^3*y*z-22664*x^2*y^3-

30496*x^2*y*z^2+35968*x*y^3*z+35168*x*y*z^3-6256*y^5-5648*y^3*z^2-8696*y*z^4-

4408*x^4-1640*x^3*z+4180*x^2*y^2-2092*x^2*z^2+13920*x*y^2*z+2928*x*z^3-1480*y^4-

15884*y^2*z^2-7500*z^4+17176*x^2*y-5536*x*y*z+7968*y^3+2792*y*z^2+5464*x^2-

1120*x*z+912*y^2+3208*z^2-4928*y-1936=0 
 


